
 UNREL(TM) - REL to ASM translator

 Table of Contents

 General Information1
 UNREL - Convert /REL to /ASM.2
 DECODREL - Generate a REL bit stream map.....6
 SPLITLIB - Split library into files8
 Technical Specifications.....................9
 Warranty and Customer Support...............16

 UNREL(TM) User Manual: Copyright(C) 1987 MISOSYS, Inc., All rights reserved.
 Published by MISOSYS, Inc., PO BOX 239, Sterling, VA 22170-0239.

 The distribution and sale of this program(s) is intended for the personal use
 of the original purchaser only and for use only on the computer system noted
 herein. Furthermore, copying, duplicating, selling, or otherwise distributing
 copies of this product is expressly forbidden. In accepting this product, the
 purchaser recognizes and accepts this agreement. The purchaser is entitled to
 make as many working copies of this disk as is needed for his or her personal
 use.

 UNREL, DEDCODREL, SPLITLIB: Copyright O 1986/7 Riclin Computer Products, All
 rights reserved.

 CP/M is a trademark of Digital Research Incorporated
 LDOS is a trademark of MISOSYS, Inc.
 LS-DOS a trademark of Logical Systems Incorporated
 Microsoft is a trademark of Microsoft Corporation

 General

 This product can be used to aid in the conversion of relocatable object
 modules to a Z80 source code file. It consists of three utilities: UNREL,
 DECODREL, and SPLLTLIB. UNREL will decode a relocatable object module which
 has been assembled by either Microsoft's M80 or MISOSYS' MRAS assemblers. The
 output is an assembler source file compatible with MRAS and one which should
 also be equally usable with M80. DECODREL can be used to obtain a bit-stream
 analysis of a REL module or library. Finally, SPLITLIB can be used to break a
 large REL library into smaller pieces suitable for loading into memory
 constrained REL Librarians (so that your librarian can extract single modules
 to be UNRELed).

 This documentation provides information on both the UNREL-T80 product (usable
 on a TRS-80 with either LDOS(TM) 5.x or LS-DOS(TM) 6.x) and the UNREL-CP/M
 product (usable with CP/M 2.x or 3.x). Although file specifications are shown
 in this document in the form, filename/ext:d under CP/M this will be assumed
 to represent the form, d:filename.ext The CP/M version requires a Z80 based
 computer.

 UNREL(TM) - REL to ASM translator

 The files on the accompanying DATA diskette may be easily copied to your
 working SYSTEM disk by means of the DOS COPY (or PIP) utility. There may be a
 file named "README/TXT" on the disk. If so, that file will contain important
 information which may not appear in this printed documentation. You should
 read this file by issuing the command: LIST README or TYPE README.TXT.

 UNREL - REL to ASM translator

 UNREL will decode a relocatable object module which has been assembled by
 either Microsoft's M80 or MISOSYS' MRAS assemblers. The output is an ASCII
 assembler source file using Z80 mnemonics. Invoke UNREL with the syntax:
 __
 | |
 | UNREL infile[/REL] [outfile[/ASM]] |
 | |
 | infile - Is the filename of the REL module. If |
 | the extension is omitted, 'REL' will |
 | be assumed. |
 | |
 | outfile - Is the name to be used for the output |
 | Z80 assembler file. If omitted, then |
 | "infile/ASM" will be used. If outfile |
 | is entered without an extension, 'ASM' |
 | will be assumed. The source drive will |
 | be used unless outfile includes a |
 | drive specification. |
 |__|

 The action of UNREL is to take a binary REL file which looks like this when
 displayed in hexadecimal:

 8091D15391D494204505345548194149154D155205504F494E5481131253
 916054C494E454281931253915091A0553455458598194D455161654A064
 44F424F5846819113D1D49412206424F584C494E819113D3125391605584
 4454C548156511153152064745545058598151D15516166054E4547484C8
 152131191116034444548115925155E06475250434C3180D0D314E500001

 into a form more usable by your MRAS or M80 assembler; an ASCII file such as
 the following:

 ;GENGRP/ASM:1
 NAME ('GENGRP')
 EXTRN BAKCLR,CLIPP,DCOMPR,DOWNC,FCERR,FETCHC,FORCLR,GRPACX
 EXTRN GKPACY,GXPOS,GYPOS,ICOMP,LEFTC,LINSTL,MAPXYC,MAXDEL
 EXTRN MAXUPD,MINDEL,MINUPD,NSETCX,PGRPCX,PGRPC,READC,RIGHTC
 EXTRN SCALXY,SCNCRD,SEEGRP,SETATR,SETC,STOREC,UPC,VIEWMP
 EXTRN VXLEFT,VXRGHT,VYLEFT,VYRGHT,XCHGAC,XCHGX,XCHGY
 PUBLIC BOXLLN,CLS,DDT,DOBOXF,DOGRPH,DOLINE,GETPXY
 PUBLIC GRPCL1,HLFDE,LINE,LINEB,LINEBF,NEGHL,POINT
 PUBLIC PSET,SETXY,SETXYR,VIEW,XDELT,YDELT
 CSEG
 SETXYR:
 PUSH DE
 PUSH HL
 LD HL,(GRPACX)
 LD (PGRPCX),HL

 UNREL(TM) - REL to ASM translator

 EX (SP),HL
 LD E,(HL)
 INC HL
 LD D,(HL)
 POP HL
 ADD HL,DE
 LD (GRPACX),HL
 LD (GXPOS),HL
 LD HL,(GRPACY)
 LD (PCRPCY),HL
 EX (SP),HL
 LD E,(HL)
 INC HL
 LD D,(HL)
 POP HL
 ADD HL,DE
 LD (GRPACY),HL
 LD (GYPOS),HL
 RET
 SETXY:

 The example above, incidentally, is from the graphics library, GRPLIB/REL,
 which is distributed with Tandy's hi res graphics board. This miraculous
 transformation is made possible by the UNREL utility. Of course, there are
 limitations.

 First, UNREL makes the assumptions that anything in a code segment is code,
 and anything in a data segment is data. Those of you already having experience
 with object code disassemblers know that decoders can sometimes get "fooled"
 by data being interpreted as code. With object module REL files, this problem
 still exists. However, if good programming practices, such as segregation of
 code and data, have been followed by the original programmer of the REL
 module, your decoding job is simpler.

 Second, UNREL supports only the following special link items (SLI):

 O - entry symbol
 1 - select common block
 2 - program name
 3 - request library search
 5 - define common size
 6 - chain external
 7 - define entry point
 9 - extern+offset
 10 - define data size
 11 - set location counter
 13 - define program size
 14 - end program
 15 - end file

 The undocumented special link items (4 and 8) as well as chain address, SLI-
 12, are not supported. The later is used in Microsoft's one-pass compilers.
 SLI-4 and SLI-8 are used in a more recent version of M80 for handling 8-bit
 externs with greater support of arithmetic expressions resolvable at link
 time; however, Microsoft wasn't too potent in letting the world know of the
 specific details associated with that link item. In any event, we're not
 supporting it in UNKEL.

 UNREL(TM) - REL to ASM translator

 Here is a small sample program used to demonstrate the behavior of UNREL. It is
 the assembly listing using MRAS.

 mras testmod:l

 MRAS 1.0a - Copyright (c) 1985 MTSOSYS, Inc., All rights reserved.

 Including TESTMOD:1
 00001 CSEG
 0000' 210000" 00002 START LD HL,MESSAGE
 0003' 3EOA 00003 LD A,10
 0005' EF 00004 RST 28H
 0006' C30000* 00005 JP NEXT##
 00006 DSEG
 0000" 48 00007 MESSAGE DB `Hello World!',13
 65 6C 6C 6F 20 77 6F 72
 6C 64 21 OD
 0000' 00008 END START
 0000 is the transfer address
 00000 Total errors
 36974 Free space

 Note that this module contains an external symbol, "NEXT". It also contains
 both a code and a data segment. There are also two symbols local to the
 module; one in each segment. We can process the resulting REL module with
 UNREL using a command such as:

 UNREL TESTMOD

 UNREL will generate the file, TESTMOD/ASM, which contains the assembler source
 code for "testmod" as determined from its relocatable object module. During
 the translation process, UNREL will display some messages which indicate its
 progress. These messages will look like the following:

 UNREL - Disassemble /REL Module - Version 1.0b
 Copyright 1987 Riclin Computer Products. All rights reserved.

 Pass 1 - building segments and symbol tables
 ..
 Pass 2 - resolving relocations and local labels

 Pass 3 - disassembling to output

 After this operation, UNREL has generated the source file which can then be
 assembled by either M80 or MRAS (or other M80-compatible assembler). The
 "assembler source" file would look like this:

 ;TESTMOD/ASM:1
 NAME (`TESTMO')
 EXTRN NEXT
 CSEC,
 CSEG$0000:
 LD HL,DSEG$0000
 LD A,0AH
 RST 28H
 JP NEXT
 DSEG

 UNREL(TM) - REL to ASM translator

 DSEGS0000:
 DB 48H
 DB 65H
 DB 6CH
 DB 6CH
 DB 6FH
 DB 20H
 DB 77H
 DB 6FH
 DB 72H
 DB 6CH
 DB 64H
 DB 21H
 DB 0DH
 END CSEG$0000

 As can be observed, the external symbol has been noted by means of an "EXTRN"
 statement. The source code prologue section will include all such externals
 and PUBLIC symbols as well. Symbols local to the module will be identified by
 a unique symbol. The data segment region will be generated as discrete byte
 values.

 In cases where the original assembler source module was fraught with non-code
 fragments in the code segment or code fragments in the data or common
 segments, UNREL will not be able to generate an "accurate" representation of
 the original code. This is to be expected. Also, UNREL will group all code
 segments into one single code segment. Similarly, all data segments will be
 grouped into one. This does not effect the logic of the original source code.

 UNREL can work properly only on a single module; don't expect it to produce
 meaningful output if you try to "unrel". a library composed of more than one
 module. If you have the MISOSYS librarian for M-80 type REL files, MLIB, or a
 CP/M librarian, such as LIB80 or LIB, you can easily pull apart relocatable
 libraries into their individual module members and then translate the
 associated modules into ASM source. Without the resources of a librarian, you
 may be able to split a library into single modules with the SPLITLIB utility
 provided as part of this package.

 UNREL(TM) - REL to ASM translator

 DECODREL - REL bit stream analysis

 The DECODREL utility generates an analysis of the bit stream of a REL file.
 This can be used to more fully understand the actual bit stream. DECODREL is
 invoked with the syntax:

 | DECODREL [-f] infile[/REL] [outfile[/RMP]] |
 | |
 | -f - Flag used to designate a FULL output |
 | versus a brief output. DECODREL will |
 | default to brief. Specify "-f" for a |
 | FULL report. |
 | |
 | infile - Is the filename of the REL module. If |
 | the extension is omitted, 'REL' will |
 | be assumed. |
 | |
 | outfile - Is the name to be used for the output |
 | analysis file. If omitted, Then |
 | "infile/RMP" will be used. If outfile |
 | is entered without an extension, 'RMP' |
 | will be assumed. The source drive will |
 | be used unless outfile includes a |
 | drive specification. |
 |___|

 If we want to process the TESTMOD/REL module previously illustrated, and
 generate an analysis map, we would use a command such as:

 DECODREL TESTMOD

 The following analysis is generated to the file named, "TESTMOD/RMP":

 0000:7 - Program name (02), TESTMO
 0007:5 - Data area size (OA), Absolute (O), 00OD
 0OOA:4 - Program size (OD), Program relative (1), 0009
 000D:3 - Set counter (OB), Program relative (1), 0000
 001A:0 - Set counter (OB), Data relative (2), 0000
 002C:2 - Chain external (06), Program relative (1), 0007, NEXT
 0034:6 - End program (OE), Program relative (1), 0000
 0038:7 - End file (OF)

 Since we did not specify the "-F" flag, the BRIEF analysis is generated. Such
 an analysis does not include any absolute, data relative, code relative, or
 common relative bytes. The presentation includes the bit-stream flow of
 special link items.

 The first field noted is the relative byte and bit offset of the referenced
 item within the relocatable object module file (remember, bits are used hi-
 order to lo-order or 7 to 0). This may prove useful for specialized purposes.
 The information presented on each line describes the special link item by
 name; the contents of (and description where appropriate) each SLI field is
 also noted in hexadecimal. The technical specification section describes the
 structure of an M80-compatible relocatable object module. That section should

 UNREL(TM) - REL to ASM translator

 be reviewed if you are either unfamiliar with that format or have, at most,
 read only sketchy details of the format.

 If you would prefer the DECODREL analysis to include information on the entire
 REL module bit stream, the preceding command invocation would be changed to:

 DECODREL -F TESTMOD ALLDATA

 This example also illustrates the specification of "outfile". The following
 analysis is generated to the file named, "ALLDATA/RMP":

 0000:7 - Program name (02), TESTMO
 0007:5 - Data area size (0A), Absolute (O), 000D
 000A:4 - Program size (0D), Program relative (1), 0009
 000D:3 - Set counter (0B), Program relative (1), 0000
 0010:2 - 0000' - Absolute item, 21
 0011:1 - 0001' - Data relative (2), 0000
 0014:6 - 0003' - Absolute item, 3E
 0015:5 - 0004' - Absolute item, 0A
 0016:4 - 0005' - Absolute item, EF
 0017:3 - 0006' - Absolute item, C3
 0018:2 - 0007' - Absolute item, 00
 0019:1 - 0008' - Absolute item, 00
 001A:0 - Set counter (0B), Data relative 92), 0000
 001E:7 - 0000" - Absolute item, 48
 OO1F:6 - 0001" - Absolute item, 65
 0020:5 - 0002" - Absolute item, 6C
 0021:4 - 0003" - Absolute item, 6C
 0022:3 - 0004" - Absolute item, 6F
 0023:2 - 0005" - Absolute item, 20
 0024:1 - 0006" - Absolute item, 77
 0025:0 - 0007" - Absolute item, 6F
 0027:7 - 0008" - Absolute item, 72
 0028:6 - 0009" - Absolute item, 6C
 0029:5 - 000A" - Absolute item, 64
 002A:4 - 000B" - Absolute item, 21
 002B:3 - 000C" - Absolute item, 0D
 002C:2 - Chain external (06), Program relative (1), 0007, NEXT
 0034:6 - End program (OE), Program relative (1), 0000
 0038:7 - End file (0F)

 This analysis includes the segment relative address of each item being
 presented followed by the standard segment indicator character.

 UNREL(TM) - REL to ASM translator

 SPLITLIB - REL library splitter

 Librarians which work by loading a REL library into a memory buffer may limit
 the size of the library it can deal with. This is the case with MLIB. ,To
 overcome this limitation, SPLITLIB can be used to split a large library file
 into two or more smaller files. SPLITLIB is invoked with the syntax:

 | |
 | SPLITLIB infile[/REL] maxlength [drivespec] |
 | |
 | |
 | infile - Is the filename of the REL library. If |
 | the extension is omitted, 'REL' will |
 | be assumed. |
 | |
 | maxlength - Is the maximum length of an output |
 | file (in bytes). The module currently |
 | being output will be continued to it's |
 | "module end" which will be followed by |
 | an "end file" byte (X'9E'). Maxlength |
 | must be in the range <100-32767). |
 | |
 | drivespec - This designates the drive to which the |
 | file partitions will be written. If |
 | omitted, the drive specified with |
 | "infile" will be used. Each output |
 | partition will be named, "infile/Rxx"; |
 | "xx" being 01, 02, ... for the first, |
 | second, etc., partitions. |
 |___|

 Let's say we have a library named GRPLIB that we wish to split. The following
 example illustrates splitting this library file into pieces approximately 6000
 bytes in length:

 slibd grplib:7 6000 :1

 SPLITLIB - Split /REL Library - Version 1.0a
 Copyright 1986 Riclin Computer Products. All rights reserved.

 Reading input file GRPLIB/REL:7

 Writing output file GRPLIB/RO1:1
 Module ADVGRP
 Module GENGRP

 Writing output file GRPLIB/R02:1
 Module TRSGRP

 This example illustrates how SPLITLIB informs you of the file it is reading,
 the output files being generated, and the modules being written to each output
 file partition.

 If the last module of the source file being written to the last output
 partition results in a partition size exceeding maxlength, another file of
 NULL length will be generated. This NULL file can be ignored.

 UNREL(TM) - REL to ASM translator

 Technical specifications

 This section describes the relocatable bit stream of a Microsoft relocatable
 object module. We do not intend this section to be an authority on the
 subject; however, its discussion accurately portrays our interpretation of the
 documentation appearing in the literature presented by Microsoft.

 Microsoft compatible 'REL' format

 All Z80 assemblers work in a similar fashion, in that they convert a file
 containing SOURCE CODE, written in Z80 assembly language mnemonics, to OBJECT
 CODE in some binary format. In ABSOLUTE assemblers, this binary data is a
 faithful representation of the actual machine language (ones and zeros) that
 the Z80 will execute when you want your program to run. This object code can
 only load and execute at a FIXED address in the Z80's memory space. On the
 other hand, a RELOCATABLE assembler, such as M80 or MRAS, will generate object
 code which can be relocated to any address in the Z80's 64K memory space
 before the program is to be executed.

 Let's look at an example of absolute assembly. The following program has been
 assembled at an ORIGIN of 0100H. Notice especially the values assigned to the
 memory addresses @DATE, @EXIT, @DSPLY, START, and BUFFER:

 0100 00100 ORG 0100H
 4470 00110 @DATE EQU 4470H
 402D 00120 @EXIT EQU 402DH
 4467 00130 @DSPLY EQU 4467H
 000D 00140 CR EQU ODH
 0100 211401 00150 START: LD HL,BUFFER
 0103 CD7044 00160 CALL @DATE
 0106 3E0D 00170 LD A,CR
 0108 321C01 00180 LD (BUFFER+8),A
 010B 211401 00190 LD HL,BUFFER
 010E CD6744 00200 CALL @DSPLY
 0111 C32D40 00210 JP @EXIT
 0114 00220 BUFFER: DS 9
 0100 00230 END START

 @DATE 4470 @DSPLY 4467 @EXIT 402D
 BUFFER 0114 CR 000D START 0100

 The program has been reassembled below at a new origin, 0200H. Some of the
 addresses for the above labels have changed, while some remain the same:

 0200 00100 ORG 0200H
 4470 00110 @DATE EQU 4470H
 402D 00120 @EXIT EQU 402DH
 4467 00130 @DSPLY EQU 4467H
 000D 00140 CR EQU ODH
 0200 211402 00150 START: LD HL,BUFFER
 0203 CD7044 00160 CALL @DATE
 0206 3E0D 00170 LD A,CR
 0208 321C02 00180 LD (BUFFER+8),A
 020B 211402 00190 LD HL,BUFFER
 020E CD6744 00200 CALL @DSPLY
 0211 C32D40 00210 JP @EXIT
 0214 00220 BUFFER: DS 9

 UNREL(TM) - REL to ASM translator

 0200 00230 END START

 @DATE 4470 @DSPLY 4467 @EXIT 402D
 BUFFER 0214 CR 000D START 0200

 To be specific, START and BUFFER have changed, while the others are un
 changed. Both START and BUFFER have been relocated! START, instead of being at
 0100H is now at 0200H, and BUFFER has moved from 0114H to 0214H. This offset
 of 0100H is due to the changed origin, 0100H versus 0200H. START and BUFFER
 are therefore internally relocatable values, while @DATE, for example, will
 always be 4470B, and is thus known as an absolute value.

 The same program, as assembled using relocation looks like this:

 4470 @DATE EQU 4470H
 402D @EXIT EQU 402DH
 4467 @DSPLY EQU 4467H
 000D CR EQU 0DH
 0000' 21 0014' START: LD HL,BUFFER
 0003' CD 4470 CALL @DATE
 0006' 3E 0D LD A,CR
 0008' 32 001C' LD (BUFFER+8),A
 000B' 21 0014' LD HL,BUFFER
 000E' CD 4467 CALL @DSPLY
 0011' C3 402D JP @EXIT
 0014' BUFFER: DS 9
 END START

 @DATE 4470 @DSPLY 4467 @EXIT 402D
 BUFFER 0014' CR 000D START 0000'

 All of the internal program addresses have been assembled as if the program had
 an origin of 0000H, and are noted with a following single-quote ('). This is
 relocation at work. The binary output of this assembly (a /REL file) cannot be
 executed by the Z80 until you choose an origin for the program; this is done
 by a utility known as a LINKER, and can be ANY address in the Z80 memory space.
 The linker will determine, from the origin you have selected, where START and
 BUFFER really will be when the program is run. If you choose 0100H as the
 origin, then START will be located at 0100H, and BUFFER at 0114H. Other origins
 will produce similar results; START and BUFFER will be at different addresses,
 but the offset between them (0014H) will always be the same.

 This characteristic of relocatable object files, that they can be LINKED at
 any origin, is extended by a further capability: relocatable object files may
 be linked TOGETHER to form a complete program from many smaller pieces. This
 allows you to write a very large program in lesser chunks which are easier to
 edit and to understand. In addition, you can develop libraries of standard and
 useful subroutines, each thoroughly tested and debugged, which any main
 program may call upon when necessary. The Microsoft FORTRAN library
 (FORLIB/REL), for example, thus contains many subroutines which can be used by
 any FORTRAN or Z80 assembler program.

 The mechanism of program and subroutine linkage that is often used is
 implemented by the ENTRY and EXTERNAL attributes. A label which is declared
 ENTRY (or GLOBAL or PUBLIC) in one module can be accessed by another module in
 the following way:

 UNREL(TM) - REL to ASM translator

 ;Module 1
 ENTRY LABEL1 ;this is an entry point
 LABEL1:
 <code follows>
 END ;end of module 1

 ;Module 2
 EXTRN LABEL1 ;this is an EXTERNAL declaration
 ;could also be EXT.
 CALL LABEL1 ;and this is a reference to the
 ;external
 END ;end of module 2

 The relocatable format also allows you to do other things. In many
 applications, program code and data areas must be separated. This most often
 occurs when code must be placed in ROM, such as the BASIC interpreter in a
 TRS-80. However, the data areas cannot be in ROM; they must be in writeable
 memory (RAM), and thus must be separated from the code areas. This can be
 accomplished by use of the CSEG and DSEG commands to the assembler. A CSEG
 pseudo-operation signals the start of a code area, while a DSEG indicates the
 start of a data area. Code and data SEGMENTS may be intermixed in a program
 source file, and the assembler will automatically keep them separate by the
 use of two distinct program or location counters, one for each segment. When
 you link a program with the linker, you may tell the linker at what address to
 place the code, and also where to place the data. Thus the two segments are
 separated. The above example is shown below using this technique:

 4470 @DATE EQU 4470H
 402D @EXIT EQU 402DH
 4467 @DSPLY EQU 4467H
 000D CR EQU 0DH
 0000' CSEG ;code starts here
 0000' 21 0000" START: LD HL,BUFFER
 0003' CD 4470 CALL @DATE
 0006' 3E OD LD (BUFFER+8),A
 0008' 32 0008" LD HL,BUFFER
 000B' 21 0000" CALL @DSPLY
 000E' CD 4467 JP @EXIT
 0011' C3 402D DSEG ;data starts here
 BUFFER: DS 9
 0000" END START

 @DATE 4470 @DSPLY 4467 @EXIT 402D
 BUFFER 0000" CR 000D START 0000'

 Notice how the label BUFFER is now located at 0000H, but in the data segment,
 as indicated by the double-quote (") following the address. An linker session
 (illustrated with MLINK commands) could then be as follows with user entries
 in BOLDFACE:

 DOS Ready
 MLINK
 MLINK - Ver 1.0a Copyright 1985 MISOSYS, Inc., All rights reserved
 ?-p=100
 ?-d=1000
 ?test
 27937 Free space

 UNREL(TM) - REL to ASM translator

 P <0100-0113 0014> D <1000-1008 0009>
 *test-n-e
 DOW Ready

 The "-p" command to the linker established the program (or code) segment
 origin, while the "-d" command did the same for the data segment. After
 loading TEST/REL with the next command, the linker then tells us where the two
 segments are located and how long they are. The final command writes out an
 executable command file (/CMD). If we were to disassemble TEST/CMD, we would
 find that START is located at 0100H and BUFFER at 1000H. Thus the program is
 separated into ROM and RAM sections.

 Relocatable assemblers and linkers have other capabilities, such as the use of
 COMMON blocks. You can also generate absolute code, if you use the ASEG
 pseudo-op.

 Finally, we get to the actual format of a Microsoft relocatable object file. A
 /REL file is composed of a bit (not byte) stream. Each /REL file may contain a
 table of ENTRY points and EXTERNAL references. Each ENTRY point is identified
 by its name (1 to 7 ASCII characters; although some releases of M80/L80
 support only 1-6) and its relative location within one of the module's code,
 data, or common segments. Each EXTERNAL reference is identified by its name,
 and also by a chain (or linked list) of pointers, each of which locates the
 relative address within the module where the external was used. The last
 pointer in the chain is zero. The /REL file also contains internal relocation
 data necessary for resolution of label references within the module. All
 external and internal relocatable references are changed to absolute values at
 link time, when the program's segment origins have been established. The
 remainder of the information in the /REL file consists of absolue code and
 data bytes which do not need relocation, and numerous other fields which
 describe common blocks, the module name, the module segment lengths, and the
 /REL file end (or EOF byte). A library file would contain many such modules,
 each separated by program end indicators, and terminated by an EOF byte.

 Let's take one Last look at our example, modified slightly, to see what the
 relocatable object file assembled from this source code would look like:

 NAME (`TEST')
 4470 @DATE EQU 4470H
 402D @EXIT EQU 402DH
 4467 @DSPLY EQU 4467H
 000D CR EQU 0DH
 CSEG ;code starts here
 ENTRY START
 EXT MESSAGE
 0000' 21 0000" START: LD HL,BUFFER
 0003' CD 4470 CALL @DATE
 0006' 3E 0D LD A,CR
 0008' 32 0008" LD (BUFFER+8),A
 000B' 21 0000" LD HL,BUFFER
 000E' 11 0000* LD DE,MESSAGE
 0011' 01 0009 LD BC,BUFFLEN
 0014' ED BO LDIR
 0016' 21 0000* LD HL,MESSAGE
 0019' CD 4467 CALL @DSPLY
 001C' C3 402D JP @EXIT
 DSEG ;data starts here
 ENTRY BUFFER

 UNREL(TM) - REL to ASM translator

 0000" BUFFER DS 9
 0009 BUFFLEN EQU $-BUFFER
 END START

 @DATE 4470 @DSPLY 4467 @EXIT402D
 BUFFER 0000" BUFFLEN 0009 CR 000D
 MESSAGE 0017* START 0000'

 Notice how the external label, MESSAGE, is defined in the symbol table; the
 value 0017H represents the relative location of the LAST reference to MESSAGE
 in the assembled code, and the trailing asterisk (") denotes an external
 symbol both in this table and in the assembled code listing.

 The following is a tabular picture of the decoded /REL file. Each column
 represents:

 1. Absolute [0] or relocatable [1] item [1 bit]. If absolute, column (2)
 shows the value in hex [8 bits].

 2. Relocation type [0 = special link item; 1, 2, or 3 = segment
 relative] [2 bits]. See column (8).

 3. Special link item control field in decimal [4 bits]. See column (8).

 4. "A-field" address type, same as column (2) [2 bits].

 5. "A-field" value, displayed as high/low, but reversed in file [16
 bits].

 6. "B-field" length [3 bits].

 7. "B-field" symbol in ASCII [8 bits each character].

 Description of the object file record as decoded.

 (1) (2) (3) (4) (5) (6) (7) (8)
 --- --- --- --- ------ -- ------- ----------------------------------
 1 0 2 4 TEST program name
 1 0 0 5 START entry symbol for library search
 1 0 0 6 BUFFER entry symbol for library search
 1 0 10 0 00 09 define data area size
 1 0 13 1 00 1F define program size
 1 0 11 1 00 00 set loading location counter (code)
 0 21 absolute (1st byte in code segment)
 1 2 00 00 data relative (ref. to BUFFER)
 0 CD absolute
 0 70 absolute
 0 44 absolute
 0 3E absolute
 0 0D absolute
 0 32 absolute
 1 2 00 08 data relative (ref. to BUFFER+8)
 0 21 absolute
 1 2 00 00 data relative (ref. to BUFFER)
 0 11 absolute (ref. to MESSAGE follows)
 0 00 absolute (this plus next byte are
 0 00 absolute end of external chain)
 0 01 absolute

 UNREL(TM) - REL to ASM translator

 0 09 absolute
 0 00 absolute
 0 ED absolute
 0 B0 absolute
 0 21 absolute (ref. to MESSAGE follows)
 0 1 00 0F program relative (link in chain)
 0 CD absolute
 0 67 absolute
 0 44 absolute
 0 C3 absolute
 0 2D absolute
 0 40 absolute
 1 0 11 2 00 00 set loading location counter (data)
 1 0 11 2 00 09 set loading location counter (data)
 1 0 7 2 00 00 6 BUFFER define entry point (data)
 1 0 6 1 00 17 7 MESSAGE chain external (head of list)
 1 0 7 1 00 00 5 START define entry point (code)
 1 0 14 1 00 00 end program (force to next byte
 1 0 15 end file marker

 What follows is a complete definition of the relocation format supported by
 this package.

 The REL file is an encoded bit-stream containing relocatable object code
 information. It follows the format documented by Microsoft for the M8O
 assembler and L8O linker; however, only 16-bit externals are described.

 1)IF the next bit is a zero, THEN the following eight bits are
 loaded according to the value of the location counter currently in effect,
 THEN recycle to 1).

 ELSE IF the next bit is a one, THEN the next two bits represent a code which
 is interpreted as follows:

 01 - Indicates a code relative value follows. The next 16 bits are
 loaded after being offset by the code segment origin, THEN
 recycle to 1).

 10 - Indicates a data relative value follows. The next 16 bits are
 loaded after being offset by the data segment origin, THEN
 recycle to 1).

 11 - Indicates a common relative value follows. The next 16 bits are
 loaded after being offset by the selected common segment origin,
 THEN recycle to 1).

 00 - Indicates a Special Link item. The SL item consists of the
 following four bits which are interpreted as one of 16 different
 items described below; an optional VALUE field which consists of
 a 2-bit address type [00 = absolute, 01 = code relative, 10 =
 data relative, 11 = common relative] and a 16-bit address; and
 an optional NAME field that consists of a 3-bit name length
 followed by the name in 8-bit bytes. SLs 0000-0100 use only a
 NAME field; SLs 0101-1000 use both a VALUE field and a NAME
 field; SLs 1001-1110 use only a VALUE field; SL 1111 has neither
 a NAME nor a VALUE field. Unless otherwise specified, at the

 UNREL(TM) - REL to ASM translator

 conclusion of processing a special link item, processing
 recycles to 1). The Special Link items are as follows:

 0000 - indicates an entry symbol. This is used by the linker
 only when searching a library to see if the module is
 needed to satisfy an undefined extern.

 0001 - Select Common Block. Used to specify the NAMEd Common
 Block for subsequent common relative references.

 0010 - Module name. This is the name of the module. The first
 one encountered is saved by MLINK for use in generating
 the optional HEADER record of the /CMD file.

 0011 - Request Library Search. The library designated by the
 NAME field will be searched to resolve undefined
 externals prior to any object code generation. An REL
 will be first assumed. If one is not found, an IRL will
 then be assumed.

 0100 - This item is reserved by Microsoft.

 0101 - Define Common Size. This is used by MLZNK to establish
 the size of the common block designated by the NAME
 field.

 0110 - Chain External. The VALUE field contains a pointer to the
 head of a chain which ends with an absolute zero. Each
 16-bit element of the chain will be replaced with the
 value of the external symbol described in the NAME field.

 0111 - Define Entry Point. The VALUE field specifies the value
 of the symbol described by the NAME field.

 1000 - This item is reserved by Microsoft.

 1001 - External plus Offset. This specifies that the VALUE field
 must be added to the following two bytes in the current
 segment after all chain externals have been processed.

 1010 - Define Data Size. The VALUE field is used by the linker
 to establish the size of the data segment of the current
 module.

 1011 - Set Location Counter. The location counter is set to the
 value identified by the VALUE field.

 1100 - Chain Address. The VALUE field contains the the head
 pointer of a linked list; each entry in the list is to be
 replaced by the current value of the location counter.
 Chain address is generated by one-pass assemblers (or
 compilers) to have the linker fixup forward references.

 1101 - Define Code Size. The VALUE field is used by the linker
 to establish the size of the code segment of the current
 module.

 UNREL(TM) - REL to ASM translator

 1110 - End of Module. The VALUE field defines the transfer
 address for the module if other than absolute zero. This
 item denotes the end of the module. The bit stream is
 also advanced to a byte boundary. Recycle to 1) if
 loading a module from other than a library search.

 1111 - End of File. This is used to indicate the end of the
 file. It is used when searching libraries or when loading
 modules to detect the end of the file.

 Warranty

 This software program(s) is warranted to perform as documented when used on
 the specified hardware operating under the specified disk operating system as
 shown on the accompanying documentation. If within 90 days of the date of
 purchase the program is found to be defective due to a bug in the code, the
 publisher will, upon request, provide a patch to correct the bug or will
 update the program diskette with a corrected copy within a reasonable time
 period after return of the program diskette to the publisher. If within 90
 days of the date of purchase the documentation proves defective due to missing
 pages, the publisher will provide substitutes for the missing pages upon
 request.

 The publisher shall have no liability or responsibility to the purchaser or
 any other person, company, or entity with respect to any liability, loss, or
 damage caused or alleged to have been caused by this product, including but
 not Limited to any interruption of service, loss of business and anticipatory
 profits, or consequential damages resulting from the operation or use of this
 program.

 Customer Support

 Customer service information on this product may be acquired by contacting
 MYSOSYS, Inc., at the following address:

 MYSOSYS,Inc.
 P.O. Box 239
 Sterling, Virginia 22170-0239
 703-450-4181

	Top of document
	General
	UNREL - REL to ASM translator
	DECODREL - REL bit stream analysis
	SPLITLIB - REL library splitter
	Technical specifications
	Warranty
	Customer Support

