UNREL(TM - REL to ASM transl ator

Tabl e of Contents

General Information 1
UNREL - Convert /REL to /ASM 2
DECODREL - Cenerate a REL bit stream map..... 6
SPLITLIB - Split library into files 8
Technical Specifications..................... 9
Warranty and Custonmer Support............... 16

UNREL(TM User Manual : Copyright(C) 1987 M SOSYS, 1Inc., All rights reserved
Publ i shed by M SOSYS, Inc., PO BOX 239, Sterling, VA 22170-0239.

The distribution and sale of this program(s) is intended for the personal use
of the original purchaser only and for use only on the conputer system noted
herein. Furthermore, copying, duplicating, selling, or otherw se distributing
copies of this product is expressly forbidden. |In accepting this product, the
purchaser recogni zes and accepts this agreenent. The purchaser is entitled to
make as many working copies of this disk as is needed for his or her personal
use.

UNREL, DEDCODREL, SPLITLIB: Copyright O 1986/ 7Riclin Conputer Products, Al
rights reserved.

CP/Mis a trademark of Digital Research |Incorporated
LDOS is a trademark of M SOSYS, Inc.

LS-DOS a trademark of Logical Systens |ncorporated
M crosoft is a trademark of M crosoft Corporation

Gener a

This product can be used to aid in the conversion ofrel ocatabl e object
nodul es to a Z80 source code file. It consists of three utilities: UNREL,
DECODREL, and SPLLTLIB. UNREL will decode a rel ocatable object nodul e which
has been assenbl ed by either Mcrosoft's M30 or M SOSYS MRAS assenblers. The
out put is an assenbler source file conpatible with MRAS and one which should
al so be equally usable with MBO. DECODREL can be used to obtain a bit-stream
analysis of a REL nodule or library. Finally, SPLITLIB can be used to break a
large REL library into smaller pieces suitable for loading into nenory
constrained REL Librarians (so that your |librarian can extract single nmodul es
to be UNRELed).

Thi s documentation provides information on both the UNREL-T80 product (usable
on a TRS-80 with either LDOS(TM 5.x or LS-DOS(TM) 6.x) and the UNREL-CP/ M
product (usable with CP/M2.x or 3.x). Although file specifications are shown
in this docunent in the form filenameéxt:d under CP/Mthis wll be assuned

to represent the form d:fil enane. ext The CP/ M version requires a Z80 based

comput er.

UNREL(TM - REL to ASM transl ator

The files on the accompanying DATA diskette may be easily copied to your
wor ki ng SYSTEM di sk by neans of the DOS COPY (or PIP) utility. There nmay be a
file named "README/ TXT" on the disk. |If so, that file will contain inportant
i nformati on which may not appear in this printed docunentation. You should
read this file by issuing the command: LIST README or TYPE README. TXT.

UNREL - REL to ASM transl ator
UNREL wi Il decode a relocatable object nmopdule which has been assenbled by

either Mcrosoft's MB0O or M SOSYS MRAS assenblers. The output is an ASCI
assenbl er source file using Z80 mmenoni cs. I nvoke UNREL with the syntax:

I

infile - Is the filenanme of the REL nodule. If |
the extension is omtted, 'REL'" wll |

be assuned. |

|
|
|
|
|
|
| |
| outfile - Is the nane to be used for the output |
|
|
|
|
|
|
|

UNREL i nfile[/REL] [outfile[/ASM] |

Z80 assenbler file. If omtted, then
infile/ ASM' will be used. Ifoutfile
is entered without an extension, 'ASM |
will be assumed. The source drive will |
be used unlessoutfile includes a |
drive specification. |

The action of UNREL is to take a binary REL file which |ooks |like this when
di spl ayed i n hexadeci mal :

8091D15391D494204505345548194149154D155205504F494E5481131253
916054C494E454281931253915091A0553455458598194D455161654A064
44F424F5846819113D1D49412206424F584C494E819113D3125391605584
4454C548156511153152064745545058598151D15516166054E4547484C8
152131191116034444548115925155E06475250434C3180D0D314E500001

into a form nore usable by your MRAS or MBO assenbler; an ASCII file such as
the follow ng:

. GENGRP/ ASM 1

NAME (' GENGRP')

EXTRN BAKCLR, CLI PP, DCOVPR, DOWNC, FCERR, FETCHC, FORCLR, GRPACX
EXTRN GKPACY, GXPOS, GYPCS, | COMP, LEFTC, LI NSTL, MAPXYC, MAXDEL
EXTRN MAXUPD, M NDEL, M NUPD, NSETCX, PGRPCX, PGRPC, READC, Rl GHTC
EXTRN SCALXY, SCNCRD, SEEGRP, SETATR, SETC, STOREC, UPC, VI EWVP
EXTRN VXLEFT, VXRGHT, VYLEFT, VYRGHT, XCHGAC, XCHGX, XCHGY

PUBLI C BOXLLN, CLS, DDT, DOBOXF, DOGRPH, DOL| NE, GETPXY

PUBLI C GRPCL1, HLFDE, LI NE, LI NEB, LI NEBF, NEGHL, POl NT

PUBLI C PSET, SETXY, SETXYR, VI EW XDELT, YDELT

CSEG

SETXYR:
PUSH DE
PUSH HL

LD HL, (GRPACX)
LD (PGRPCX), HL

UNREL(TM - REL to ASM transl ator

EX (SP), HL

LD E (HL)
INC HL
LD D, (HL)
POP HL
ADD HL, DE

LD (GRPACX), HL
LD (GXPOS), HL
LD HL, (GRPACY)
LD (PCRPCY), HL
EX (SP), HL

LD E (HL)
INC HL
LD D, (HL)
POP HL
ADD HL, DE

LD (GRPACY), HL
LD (GYPOS), HL
RET

SETXY:

The exanpl e above, incidentally, is fromthe graphics library, GRPLIB/REL,
which is distributed with Tandy's hi res graphics board. This niracul ous

transformation is nmade possible by the UNREL wutility. O course, there are
limtations.

First, UNREL makes the assunptions that anything in a code segnment is code

and anything in a data segnent is data. Those of you already having experience
wi th object code di sassenmblers know that decoders can sonetines get "fool ed”

by data being interpreted as code. Wth object nodule REL files, this problem
still exists. However, if good programm ng practices, such as segregation of
code and data, have been followed by the original programmer of the REL
nodul e, your decoding job is sinpler.

Second, UNREL supports only the followi ng special link items (SLI):

O - entry synbol

1 - select common bl ock
2 - program name

3 - request library search
5 - define comon size
6 - chain externa

7 - define entry point

9 - extern+offset

10 - define data size

11 - set location counter
13 - define programsize
14 - end program

15 - end file

The undocunented special link itens (4 and 8) as well as chain address, SLI-
12, are not supported. The later is wused in Mcrosoft's one-pass conpil ers.
SLI-4 and SLI-8 are wused in a nmore recent version of MO for handling 8-bit
externs with greater support of arithmetic expressions resolvable at |ink
tinme; however, Mcrosoft wasn't too potent in letting the world know of the
specific details associated with that link item In any event, we're not
supporting it in UNKEL.

UNREL(TM - REL to ASM transl ator

Here is a small sanple program used to denonstrate the behavior of UNREL. It is
the assenbly listing using MRAS.

nras testnod:
MRAS 1.0a - Copyright (c) 1985 MISOSYS, Inc., All rights reserved.

I ncl udi ng TESTMOD: 1

00001 CSEG
0000' 210000" 00002 START LD HL, MESSAGE
0003 3EOCA 00003 LD A 10
0005' EF 00004 RST 28H
0006' C30000* 00005 JP NEXT##
00006 DSEG
0000" 48 00007 MESSAGE DB "Hello World!', 13
65 6C6C 6F 20 77 6F 72
6C 64 21 OD
0000' 00008 END START

0000 is the transfer address
00000 Total errors
36974 Free space

Note that this module contains an external synbol, "NEXT". It also contains
both a code and a data segnent. There are also two synbols local to the
nodul e; one in each segnment. We can process the resulting REL nodule with
UNREL using a commmand such as:

UNREL TESTMOD

UNREL wi |l generate the file, TESTMOD/ ASM which contains the assenbler source
code for "testnod" as determined from itsrelocatable object nodule. During
the translation process, UNREL will display sonme nessages which indicate its
progress. These nessages will | ook like the follow ng:

UNREL - Di sassenmble /REL Module - Version 1.0b
Copyright 1987 Riclin Conputer Products. Al rights reserved.

Pass 2 - resolving relocations and | ocal | abels

Pass 3 - disassenbling to output

After this operation, UNREL has generated the source file which can then be
assenbl ed by either MBO or MRAS (or other MBO-conpatible assenbler). The
"assenbl er source” file would |look like this:

; TESTMOD/ ASM 1

NANE (* TESTMO)
EXTRN NEXT
CSEC,
CSEG$0000:
LD HL, DSEG$0000
LD A, 0AH
RST 28H
JP NEXT

DSEG

UNREL(TM - REL to ASM transl ator

DSEGS0000:
DB 48H
DB 65H
DB 6CH
DB 6CH
DB 6FH
DB 20H
DB 77H
DB 6FH
DB 72H
DB 6CH
DB 64H
DB 21H
DB ODH

END CSEG$0000

As can be observed, the external synmbol has been noted by nmeans of an "EXTRN'

statenent. The source code prologue section will include all such externals
and PUBLI C synmbols as well. Synbols local to the nmodule will be identified by
a uni que synbol. The data segnent region will be generated as discrete byte
val ues.

In cases where the original assembler source nodule was fraught with non-code
fragments in the code segnent or code fragnments in the data or common

segments, UNREL will not be able to generate an "accurate" representation of
the original code. This is to be expected. Also, UNREL will group all code
segnments into one single code segment. Simlarly, all data segnments will be

grouped into one. This does not effect the logic of the original source code.

UNREL can work properly only on a single nmodule; don't expect it to produce
meani ngful output if you try to Unrel". a library conposed of nore than one
nodul e. | f you have the M SOSYS |ibrarian for M80 type REL files, M.IB, or a
CP/Mlibrarian, such as LIB80 or LIB, you can easily pull apartrel ocatable
libraries into their individual nmodule nmenmbers and then translate the
associ ated nodul es into ASM source. Wthout the resources of a librarian, you
may be able to split a library into single mpdules with the SPLITLIB utility
provided as part of this package.

UNREL(TM - REL to ASM transl ator
DECODREL - REL bit stream anal ysis
The DECODREL utility generates an analysis of the bit streamof a REL file.

This can be used to more fully understand the actual bit stream DECODREL is
i nvoked with the syntax:

DECODREL [-f] infile[/REL] [outfile[/RVP]] |

I
- f - Flag used to designate a FULL out put |
versus a brief output. DECODREL wil I |

default to brief. Specify "-f" for a |

FULL report. |

I

I

I

I

I

I

I

I

| infile - Is the filename of the REL nodule. If |
| the extension is omtted, 'REL'" will |
| be assuned. |
I

| outfile - Is the name to be used for the output |
| analysis file. If omtted, Then |
| "infile/ RMP" will be used. Ifoutfile

| is entered without an extension, 'RW |
| will be assumed. The source drive will |
| be used unlessoutfile includes a

| drive specification. |
I

If we want to process the TESTMOD/REL nodule previously illustrated, and
generate an anal ysis nmap, we would use a command such as:

DECODREL TESTMOD

The following analysis is generated to the file named, "TESTMOD/ RVP"

0000: 7 - Program name (02), TESTMO

0007:5 - Data area size (OA), Absolute (O, 000D

0OOA: 4 - Program size (OD), Programrelative (1), 0009

000D: 3 - Set counter (OB), Programrelative (1), 0000

001A: 0 - Set counter (OB), Data relative (2), 0000

002C: 2 - Chain external (06), Programrelative (1), 0007, NEXT
0034:6 - End program (OE), Programrelative (1), 0000

0038:7 - End file (OF)

Since we did not specify the "-F" flag, the BRIEF analysis is generated. Such
an anal ysis does not include any absolute, data relative, <code relative, or
common relative bytes. The presentation includes the bit-streamflow of
special link itens.

The first field noted is the relative byte and bit offset of the referenced
itemwithin therelocatable object module file (renmenber, bits are used hi-
order tolo-order or 7 to 0). This nmay prove useful for specialized purposes.

The information presented on each line describes the special link item by
name; the contents of (and description where appropriate) each SLI field is
al so noted in hexadecimal. The technical specification section describes the

structure of an MBO-conpati bl erel ocat abl e object nodule. That section should

UNREL(TM - REL to ASM transl ator

be reviewed if you are either unfamliar with that format or have, at nost,
read only sketchy details of the format.

If you would prefer the DECODREL anal ysis to include information on the entire
REL nodule bit stream the preceding command invocati on woul d be changed to

DECODREL -F TESTMOD ALLDATA

This exanple also illustrates the specification of dutfile". The follow ng
analysis is generated to the file naned, "ALLDATA/ RWP"

0000:7 - Program name (02), TESTMO

0007:5 - Data area size (0A), Absolute (O, 000D
000A: 4 - Program size (0D), Programrelative (1), 0009
000D: 3 - Set counter (0B), Programrelative (1), 0000
0010:2 - 0000' - Absolute item 21

0011:1 - 0001" - Data relative (2), 0000

0014:6 - 0003'" - Absolute item 3E

0015:5 - 0004' - Absolute item OA

0016: 4 - 0005 - Absolute item EF

0017:3 - 0006' - Absolute item C3

0018:2 - 0007' - Absolute item 00

0019:1 - 0008" - Absolute item 00

001A: 0 - Set counter (0B), Data relative 92), 0000
001E: 7 - 0000" - Absolute item 48

OOlF: 6 - 0001" - Absolute item 65

0020: 5 - 0002" - Absolute item 6C

0021: 4 - 0003" - Absolute item 6C

0022:3 - 0004" - Absolute item 6F

0023:2 - 0005" - Absolute item 20

0024:1 - 0006" - Absolute item 77

0025: 0 - 0007" - Absolute item 6F

0027:7 - 0008" - Absolute item 72

0028: 6 - 0009" - Absolute item 6C

0029:5 - O0O00A" - Absolute item 64

002A: 4 - 000B" - Absolute item 21

002B: 3 - 000C' - Absolute item 0D

002C: 2 - Chain external (06), Programrelative (1), 0007, NEXT
0034:6 - End program (OE), Programrelative (1), 0000
0038:7 - End file (OF)

This analysis includes the segnent relative address of each item being
presented followed by the standard segnent indicator character.

UNREL(TM - REL to ASM transl ator
SPLITLIB - REL library splitter

Li brarians which work by loading a REL Ilibrary into a menory buffer may limt
the size of the Ilibrary it can deal with. This is the case with MLIB. , To
overcone this limtation, SPLITLIB can be used to split a large library file
into two or nmore smaller files. SPLITLIB is invoked with the syntax:

SPLITLIBinfile[/REL] maxl ength [drivespec] [

infile - Is the filename of the REL library. If |
the extension is omtted, 'REL' will |
be assuned. |
I
mexl ength - Is the maxi mum | ength of an output |
file (in bytes). The nodule currently
bei ng output will be continued to it's
"nmodul e end” which will be foll owed by
an "end file" byte (X 9E').Maxl ength |
must be in the range <100-32767). |
I
drivespec - This designates the drive to which the |
file partitions will be witten. If |
omtted, the drive specified with |
infile" will be used. Each out put |
partition will be naned, i"'nfil e/Rxx";
'xx" being 01, 02, ... for the first,
second, etc., partitions. |

Let's say we have a library named GRPLIB that we wish to split. The follow ng
exanple illustrates splitting this library file into pieces approximtely 6000
bytes in I ength:

slibd grplib:7 6000 :1

SPLITLIB - Split /REL Library - Version 1.0a
Copyright 1986 Riclin Conputer Products. Al rights reserved.

Readi ng input file GRPLIB/REL:7

Witing output file GRPLIB/ROLl:1
Modul e ADVGRP
Modul e GENGRP

Witing output file GRPLIB/R02:1
Modul e TRSGRP

This exanple illustrates how SPLITLIB infornms you of the file it is reading,
the output files being generated, and the nodul es being witten to each output
file partition.

If the last nodule of the source file being witten to the |ast output
partition results in a partition size exceedi ngmaxlength, another file of
NULL length will be generated. This NULL file can be ignored.

UNREL(TM - REL to ASM transl ator
Techni cal specifications

This section describes the relocatable bit streamof a Mcrosoftrel ocatable
obj ect nodule. We do not intend this section to be an authority on the
subj ect; however, its discussion accurately portrays our interpretation of the
docunent ati on appearing in the literature presented by Mcrosoft.

M crosoft conpatible 'REL' format

Al'l Z80 assenblers work in a simlar fashion, in that they convert a file
contai ning SOURCE CODE, witten in Z80 assenbly | anguage menonics, to OBJECT
CODE in sone binary format. In ABSOLUTE assenblers, this binary data is a
faithful representation of the actual nmachine | anguage (ones and zeros) that
the Z80 will execute when you want your programto run. This object code can
only |l oad and execute at a FIXED address in the Z80's nenory space. On the
ot her hand, a RELOCATABLE assenbl er, such as M30 or MRAS, will generate object
code which can be relocated to any address in the Z80's 64K nenory space
before the programis to be executed.

Let's |l ook at an exanple of absolute assenbly. The follow ng program has been
assenbled at an ORIG N of 0100H. Notice especially the values assigned to the
menory addresses @ATE, @XI T, @SPLY, START, and BUFFER

0100 00100 ORG 0100H
4470 00110 @ATE EQU 4470H

402D 00120 @XI T EQU 402DH

4467 00130 @SPLY EQU 4467H

000D 00140 CR EQU ODH

0100 211401 00150 START: LD HL, BUFFER

0103 CD7044 00160 CALL @ATE

0106 3EOD 00170 LD A CR

0108 321C01 00180 LD (BUFFER+8), A

010B 211401 00190 LD HL, BUFFER

010E CD6744 00200 CALL @SPLY

0111 C32D40 00210 JP @XT

0114 00220 BUFFER: DS 9

0100 00230 END START

@ATE 4470 @SPLY 4467 @XIT 402D
BUFFER 0114 CR 000D START 0100

The program has been reassenbled below at a new origin, 0200H Sonme of the
addresses for the above | abels have changed, while some remain the sane:

0200 00100 ORG 0200H
4470 00110 @ATE EQU 4470H
402D 00120 @XIT EQU 402DH
4467 00130 @SPLY EQU 4467H
000D 00140 CR EQU ODH

0200 211402 00150 START: LD HL, BUFFER
0203 CD7044 00160 CALL @ATE
0206 3EOD 00170 LD ACR

0208 321C02 00180 LD (BUFFER+8) , A
020B 211402 00190 LD HL, BUFFER
020E CD6744 00200 CALL @SPLY
0211 C32D40 00210 JP @EXIT

0214 00220 BUFFER: DS 9

UNREL(TM - REL to ASM transl ator

0200 00230 END START
@DATE 4470 @SPLY 4467 @EXIT 402D
BUFFER 0214 CR 000D START 0200

To be specific, START and BUFFER have changed, while the others aren
changed. Both START and BUFFER have been rel ocated! START, instead of being at
0100H is now at 0200H, and BUFFER has noved from 0114H to 0214H. This offset
of 0100H is due to the <changed origin, O0100H versus 0200H. START and BUFFER
are therefore internallyrelocatable values, while @ATE, for exanple, wll
al ways be 4470B, and is thus known as an absol ute val ue.

The same program as assenbl ed using relocation |ooks like this:

4470 @ATE EQU 4470H
402D @XIT EQU 402DH
4467 @SPLY EQU 4467H
000D CR EQU ODH
0000' 21 0014 START: LD HL, BUFFER
0003' CD 4470 CALL @ATE
0006' 3E 0D LD A CR
0008' 32 001C LD (BUFFER+8), A
000B' 21 0014 LD HL, BUFFER
000E' CD 4467 CALL @SPLY
0011' C3 402D JP @XIT
0014 BUFFER. DS 9
END START
@ATE 4470 @SPLY 4467 @EXIT 402D
BUFFER 0014' CR 000D START 0000'

All of the internal program addresses have been assenbled as if the program had
an origin of 0000H, and are noted with a following single-quote ('). This is
relocation at work. The binary output of this assenbly (a /REL file) cannot be
executed by the Z80 until you choose an origin for the program this is done
by a utility known as a LINKER, and can be ANY address in the Z80 nenory space.
The linker will determine, from the origin you have selected, where START and
BUFFER really wll be when the program is run. |If you choose O0100H as the
origin, then START will be located at 0100H, and BUFFER at 0114H. O her origins
will produce simlar results; START and BUFFER will be at different addresses,
but the offset between them (0014H) will always be the sane.

This characteristic of relocatable object files, that they can be LINKED at

any origin, is extended by a further capability: relocatable object files may

be |inked TOGETHER to forma conplete programfrom many smaller pieces. This
allows you to wite a very large programin |esser chunks which are easier to
edit and to understand. In addition, you can develop libraries of standard and
useful subroutines, each thoroughly tested and debugged, which any main
program may call upon when necessary. The M crosoft FORTRAN library
(FORLI B/ REL), for exanmple, thus contains many subroutines which can be used by
any FORTRAN or Z80 assenbl er program

The mechanism of program and subroutine |inkage that is often used is
i mpl emented by the ENTRY and EXTERNAL attributes. A | abel which is declared
ENTRY (or GLOBAL or PUBLIC) in one nodule can be accessed by another nodule in
the foll owi ng way:

UNREL(TM - REL to ASM transl ator

; Module 1
ENTRY LABEL1 ;this is an entry point
LABEL1:
<code foll ows>
END ;end of nodule 1
; Modul e 2
EXTRN LABEL1 ;this is an EXTERNAL decl arati on
;could al so be EXT.
CALL LABEL1 ;and this is a reference to the
;externa
END ;end of nodule 2
The relocatable format also allows you to do other things. In many

applications, programcode and data areas nmust be separated. This nost often
occurs when code nust be placed in ROM such as the BASIC interpreter in a
TRS-80. However, the data areas cannot be in ROM they nmust be inwiteable
menory (RAM), and thus nust be separated fromthe code areas. This can be
acconplished by use of the CSEG and DSEG conmmands to the assenbler. A CSEG
pseudo- operation signals the start of a code area, while a DSEG indicates the
start of a data area. Code and data SEGMENTS may be interm xed in a program
source file, and the assenbler wll automatically keep them separate by the
use of two distinct programor |ocation counters, one for each segnent. \Wen
you link a programwith the |inker, you may tell the |inker at what address to
pl ace the code, and also where to place the data. Thus the two segnents are
separated. The above exanple is shown bel ow using this technique:

4470 @ATE EQU 4470H

402D @GEXIT EQU 402DH

4467 @SPLY EQU 4467H

000D CR EQU ODH

0000’ CSEG ;code starts here

0000' 21 0000" START: LD HL, BUFFER

0003’ CD 4470 CALL @ATE

0006’ 3E OD LD (BUFFER+8) , A

0008’ 32 0008" LD HL, BUFFER

000B' 21 0000" CALL @SPLY

000F' CD 4467 JP @EXT

0011’ C3 402D DSEG ;data starts here
BUFFER: DS 9

0000" END START

@ATE 4470 @DSPLY 4467 @GEXT 402D

BUFFER 0000" CR 000D START 0000

Notice how the | abel BUFFER is now | ocated at 0000H, but in the data segnment,
as indicated by the double-quote (") followi ng the address. An |inker session

(illustrated with M.INK conmands) could then be as follows with user entries
i n BOLDFACE

DOS Ready

M1 NK

M.I NK - Ver 1.0a Copyright 1985 M SOSYS, Inc
?-p=100

?-d=1000

?t est

27937 Free space

, Al'l rights reserved

UNREL(TM - REL to ASM transl ator

P <0100-0113 0014> D <1000-1008 0009>
*test-n-e
DOW Ready

The "-p" conmand to the |linker established the program (or code) segnent
origin, while the "-d" conmand did the sane for the data segnent. After
| oadi ng TEST/REL with the next command, the linker then tells us where the two
segnments are located and how long they are. The final command wites out an
execut able command file (/CMD). If we were to disassenble TEST/CMD, we would
find that START is |ocated at 0100H and BUFFER at 1000H. Thus the programis
separated i nto ROM and RAM secti ons.

Rel ocat abl e assenblers and |inkers have other capabilities, such as the use of
COVMON bl ocks. You can al so generate absolute <code, if you use the ASEG
pseudo- op.

Finally, we get to the actual format of a M crosoftrel ocatable object file. A
/REL file is conposed of a bit (not byte) stream Each /REL file may contain a
tabl e of ENTRY points and EXTERNAL references. Each ENTRY point is identified
by its name (1 to 7 ASCII characters; although sone releases of MO0/ L80
support only 1-6) and its relative location within one of the nodul e's code,
data, or commpn segnents. Each EXTERNAL reference is identified by its name,
and also by a chain (or linked list) of pointers, each of which |ocates the
relative address within the nmpdule where the external was used. The | ast
pointer in the chain is zero. The /REL file also contains internal relocation
data necessary for resolution of I|abel references within the nmodule. All
external and internal relocatable references are changed to absol ute val ues at
link time, when the programis segment origins have been established. The
remai nder of the information in the /REL file consists of absolue code and
data bytes which do not need relocation, and nunmerous other fields which
descri be common bl ocks, the nodule name, the nodule segnent |engths, and the
/REL file end (or EOF byte). A library file would contain many such nodul es,
each separated by program end indicators, and term nated by an EOF byte.

Let's take one Last |ook at our exanple, nodified slightly, to see what the
rel ocatable object file assenmbled fromthis source code would | ook Iike:

NAVE (TEST')

4470 @ATE EQU 4470H

402D @XIT EQU 402DH

4467 @SPLY EQU 4467H
000D CR EQU ODH

CSEG ;code starts here
ENTRY START
EXT MESSAGE

0000' 21 0000" START: LD HL, BUFFER
0003' CD 4470 CALL @ATE
0006' 3E 0D LD A, CR

0008' 32 0008" LD (BUFFER+8) , A
000B' 21 0000" LD HL, BUFFER

000E' 11 0000* LD DE, MESSAGE

0011' 01 0009 LD BC, BUFFLEN
0014' ED BO LDI R

0016' 21 0000* LD HL, MESSAGE

0019' CD 4467 CALL @SPLY
001C C3 402D JP @XI T

DSEG ;data starts here
ENTRY BUFFER

UNREL(TM - REL to ASM transl ator

0000" BUFFER DS 9
0009 BUFFLEN EQU $- BUFFER

END START
@ATE 4470 @SPLY 4467 @EXI 402D
BUFFER 0000" BUFFLEN 0009 CR 000D
MESSAGE 0017* START 0000

Noti ce how the external |abel, MESSAGE, is defined in the synmbol table; the
val ue 0017H represents the relative |ocation of the LAST reference to MESSAGE
in the assenbl ed code, and the trailing asterisk (") denotes an externa

synmbol both in this table and in the assenbl ed code |isting.

The following is a tabular picture of the decoded /REL file. Each colum
represents:

1. Absolute [O] orrelocatable [1] item[1 bit]. If absolute, colum (2)
shows the value in hex [8 bits].

2. Relocation type [0 = special link item 1, 2, or 3 = segnent
relative] [2 bits]. See colum (8).

3. Special link itemcontrol field in decimal [4 bits]. See colum (8).
4. "A-field" address type, sane as colum (2) [2 bits].

5. "A-field" value, displayed as high/low, but reversed in file [16
bits].

6. "B-field" length [3 bits].
7. "B-field" symbol in ASCII [8 bits each character].

Description of the object file record as decoded.

(1) (2) (3) (4 (5) (6) (7) (8)

1 0 2 4 TEST program name

1 0 0 5 START entry synbol for library search

1 0 0 6 BUFFER entry synbol for library search

1 0 10 0 00 09 define data area size

1 0 13 1 00 1F defi ne program size

1 0 11 1 0000 set |l oading location counter (code)
0 21 absolute (1st byte in code segnent)
1 2 00 00 data relative (ref. to BUFFER)

0 CD absol ute

0 70 absol ute

0 44 absol ute

0 3E absol ute

0 oD absol ute

0 32 absol ute

1 2 00 08 data relative (ref. to BUFFER+8)

0 21 absol ute

1 2 00 00 data relative (ref. to BUFFER)

0 11 absolute (ref. to MESSAGE foll ows)
0 00 absolute (this plus next byte are
0 00 absolute end of external chain)

0 01 absol ute

UNREL(TM - REL to ASM transl ator

0 09 absol ute

0 00 absol ute

0 ED absol ute

0 BO absol ute

0 21 absolute (ref. to MESSAGE foll ows)

0 1 00 OF programrelative (link in chain)

0 CD absol ute

0 67 absol ute

0 44 absol ute

0 C3 absol ute

0 2D absol ute

0 40 absol ute

1 0 11 2 0000 set |l oading | ocation counter (data)
1 0 11 2 00 09 set | oading |ocation counter (data)
1 0 7 2 0000 6 BUFFER define entry point (data)

1 0 6 1 00 17 7 MESSAGE chai n external (head of list)

1 0 7 1 0000 5 START define entry point (code)

1 0 14 1 0000 end program (force to next byte

1 0 15 end file marker

What follows is a conplete definition of the relocation fornmat supported by
this package.

The REL file is an encoded bit-stream containingrelocatable object code
information. It follows the format docunmented by Mcrosoft for the MBO
assenbl er and L8O |inker; however, only 16-bit externals are described

1)1 F the next bi t is a zero, THEN t he foll ow ng eight bits are
| oaded according to the value of the |location counter <currently in effect,
THEN recycle to 1).

ELSE | F the next bit is a one, THEN the next two bits represent a code which
is interpreted as follows:

01 - Indicates a code relative value follows. The next 16 bits are
| oaded after being offset by the code segnent origin, THEN
recycle to 1).

10 - Indicates a data relative value follows. The next 16 bits are
| oaded after being offset by the data segnment origin, THEN
recycle to 1).

11 - Indicates a commpon relative value follows. The next 16 bits are
| oaded after being offset by the sel ected common segnent origin,
THEN recycle to 1).

00 - Indicates a Special Link item The SL item consists of the
followi ng four bits which are interpreted as one of 16 different
items described below, an optional VALUE field which consists of
a 2-bit address type [00 = absolute, 01 = code relative, 10 =
data relative, 11 = conmon relative] and a 16-bit address; and
an optional NAME field that <consists of a 3-bit nane |ength
foll owed by the nane in 8-bit bytes. SLs 0000-0100 use only a
NAME field; SLs 0101-1000 use both a VALUE field and a NAME
field; SLs 1001-1110 use only a VALUE field; SL 1111 has neither
a NAME nor a VALUE field. Unless otherwi se specified, at the

UNREL(TM - REL to ASM transl ator

conclusion of processing a special link item processi ng
recycles to 1). The Special Link itenms are as foll ows:

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

indicates an entry synbol. This is used by the |inker
only when searching a library to see if the nodule is
needed to satisfy an undefined extern.

Sel ect Conmon Block. Used to specify the NAMEd Conmon
Bl ock for subsequent common rel ative references.

Modul e name. This is the name of the nodule. The first
one encountered is saved by MLINK for use in generating
the optional HEADER record of the /CWVD file.

Request Library Search. The library designated by the

NAME field wll be searched to resolve undefined
externals prior to any object code generation. An REL
will be first assuned. If one is not found, an IRL wl

then be assuned.
This itemis reserved by Mcrosoft.

Define Common Size. This is used by MZNK to establish
the size of +the conmmon block designated by the NAME
field.

Chain External. The VALUE field contains a pointer to the
head of a chain which ends with an absolute zero. Each
16-bit element of the <chain will be replaced with the
val ue of the external synmbol described in the NAME field.

Define Entry Point. The VALUE field specifies the value
of the synmbol described by the NAME fi el d.

This itemis reserved by Mcrosoft.

External plus Offset. This specifies that the VALUE field
must be added to the following two bytes in the current
segnment after all chain externals have been processed.

Define Data Size. The VALUE field is used by the |inker
to establish the size of the data segnment of the current
nodul e.

Set Location Counter. The |ocation counter is set to the
value identified by the VALUE field.

Chain Address. The VALUE field contains thethe head
pointer of a linked list; each entry in the list is to be
replaced by the current value of the |ocation counter.
Chain address is generated by one-pass assenblers (or
conmpilers) to have the linkerfixup forward references.

Define Code Size. The VALUE field is used by the linker
to establish the size of the code segnent of the current
nodul e.

UNREL(TM - REL to ASM transl ator

1110 - End of Modul e. The VALUE field defines the transfer
address for the npodule if other than absolute zero. Thi s
item denotes the end of the nodul e. The bit streamis
al so advanced to a byte boundary. Recycle to 1) if
| oading a nodule fromother than a |ibrary search

1111 - End of File. This is used to indicate the end of the
file. It is used when searching |ibraries or when | oading
modul es to detect the end of the file.

Warranty

This software program(s) is warranted to perform as docunented when used on
the specified hardware operating under the specified disk operating system as
shown on the acconpanying docunmentation. [If wthin 90 days of the date of
purchase the programis found to be defective due to a bug in the code, the
publisher will, upon request, provide a patch to correct the bug or wll
update the program diskette with a corrected copy within a reasonable tine
period after return of the program diskette to the publisher. If within 90
days of the date of purchase the documentati on proves defective due to m ssing
pages, the publisher will provide substitutes for the m ssing pages upon
request.

The publisher shall have no liability or responsibility to the purchaser or
any other person, conpany, or entity with respect to any liability, |oss, or
damage caused or alleged to have been caused by this product, including but
not Limted to any interruption of service, |o0ss of business and anticipatory
profits, or consequential damages resulting fromthe operation or use of this
pr ogr am

Cust onmer Support

Custoner service information on this product nay be acquired by contacting
MYSOSYS, Inc., at the foll owi ng address:

MYSOSYS, | nc.
P. O. Box 239
Sterling, Virginia 22170-0239
703-450-4181

	Top of document
	General
	UNREL - REL to ASM translator
	DECODREL - REL bit stream analysis
	SPLITLIB - REL library splitter
	Technical specifications
	Warranty
	Customer Support

